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o Abstract

KA _ Refined estimates for the errors in eigenvalue and eigenvec-
tor approximation by finite element, or, more generally, Galerkin
b ’ methods, as they apply to self-adjoint problems, are presented.

b Particular attention is given to the case of multiple eigenvalues.

W The results are new in this case. The proof is based on a novel

approach which yields the known results for simple eigenvalues in

oY,

a simple way. Numerical computations are presented and analyzed

ot in light of the theoretical results.
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1. Introduction.

It is the purpose of this paper to derive some refined esti-
mates for the errors in eigenvalue and eigenvector approximation
by finite element, or, more generally, Galerkin methods, as they
apply to self-adjoint problems. The results are new in the case
of multiple eigenvalues. The proof is based on a novel approach
which yields the known results for simple eigenvalues in a simple
way.

Suppose \k is an eigenvalue of multiplicity q of a self-
adjoint problem and let M(\k) denocte the space of eigenvectors
corresponding to \k’ where |+l denotes the energy norm for our
problem. Let S be the finite dimensional approximation space
employed in the Galerkin method. will be approximated from

k
above by g of the Galerkin approximate eigenvalue:

\ =
k* 's,k''s,ke1r Vs kege1e
If we choose the \S i in increasing order then we have
\ A I .. 2o .
k S,k S,k+g-1

Our main estimate for the error in eigenvalue approximation is

¢
{1.1) ‘s ¢ ~ 'w - C} inf inf Hu—lnfz = Co (8)2.
' =MV, ) 1=S ; I
lall=1 |
thus showing that the error between ‘k and \S .+ the approni-
mate ejigenvalue closest to \k' is, to within a multiplicative

constant, the square of the minimal energy norm distance betweern

exact eigenvectors u - M{:+ )} with {full =1 and S, i.e., the

k

square of the energy norm distance between S and the eigenvector
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u < M(\k) with llull = 1 that can be best approximated by S.
\ -\ \ \ by
For S, k+q-1 Kk’ the error between K and S, k+q-1"' the
approximate eigenvalue farthest from ‘k’ we prove
(1.2) ' keg-1 =~ Yg = C| sup inf llu-lllj|2 = C;\ (s)?
! q uEM(\k) 1=S P !
fall=1
- i = - : Y~
and for the errors &S,k+i \k,l 1,...,9-2, we obtain bounds
in terms of quantities intermediate in size between Cz (8)2 and
k
ci, (s)%.
k

These results should be contrasted with those in the litera-

ture. In Babuska and Aziz [1], Fix (4], and Kolata [6], the

estimates

(1.2) ‘s kei K Cf\k(S), i=o0,....9-1,

are proved. For i =0,...,g~2, (1.3) is weaker than the esti-
mates stated above ((1.1) for 1 = 0 and those mentioned after
{1.2) for 1 =141i,...,g-2); for 1 = g-1, (1.3) is the same as
(1.2) In Birkhoff, de Boor, Swartz, and Wendroff [2], which pre-

sents the earliest results of the general type we are discussing,
the eigenvalue estimates depend on the sum of the sguares of the
energy norm distances between S and the unit eigenvectors asso-

ciated with all the eigenvalues \j not exceeding ‘k' The

feature of (1.1) that is new is the dependence of N (S} on only

k

one eigenvector u = M(\k), namely the one best approximated by S.

Regarding the errors in the approximate eigenvectors, we show

that if us " is the Galerkin approximate eigenvector correspond-
ing to ‘S,k’ then there is a u, = uk(S) =z M(\k) with Huku = 1
- 4 -
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such that

(1.3} Hus e T uk“ = C{\ (S)
' k
™ _ : =
The error “us,k+q—1 uk+q—1” is bounded by kak(S) and the
errors ”us,k+i - uk+i“' i=1,...,3-2, are bounded by quantities
intermediate in size between f\ {S) and ;\ (S). The best pre-
k k
viously known result is
(1.4) ”uS,k+i - uk+i” - Ce:\k(S), i=0,...,9-1.

In Section 2 we introduce the class of variationally formu-
lated, self-adjoint eigenvalue problems considered in the paper,
define the Galerkin approximations to these problems, and in Lem-
mas 2.1 - 2.3 give the preliminary results which are used in the
sequel. The main theoretical result of the paper is presented and
proved in Section 3. The treatment is direct and self-contained.
relying on a minimal amount of functional analysis background. 1In
Section 4 we present numerical computations for a finite element
approximation of a problem with double eigenvalues for which each
double eigenvalue has associated eigenvectors of strikingly

different approximation properties. The quantities

sup inf llu—tll2
=M -z
u=M( k) 1S
fluli =1
and
2
inf sup ffu-1{
= A =
usM(d, ) =S
hali=1
are thus of different sizes and we would therefore expect “—\k
PR
and \S k+1-‘k to be of different sizes. This is clearly shown by
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ﬂ% the computations. The computations also show that Us (the
LX) B
e

ﬁ& approximate eigenvector belonging to the approximate eigenvalue
y closest to \k) converges to an exact eigenvector with good
LT
!

€3 approximation properties, while Ug pegr’ the approximate eigen-
\ ‘f_; ’

'
35 vector belonging to the approximate eigenvalue farthest from ‘k’
e

P Y

,?' converdges to an exact eigenvector with poor approximation

?

) properties.

%% . . . . .

A The literature on eigenvalue problems is extensive, with many
i papers bearing, at least tangentially, on the problem addressed in
Yol

> . .
~€ﬁ this paper. We have, however, mentioned only those papers that
)

%)

)

&: bear directly on the central theme of our results; namely, the
;;. Galerkin approximation of eigenpairs corresponding to multiple
W

2 eigenvalues. For a general treatment of eigenvalue problems and

L4

<.

P

" their literature, we refer to the excellent and comprehensive
‘ﬂy monograph of Chatelin [3].
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?2 2. Preliminaries.

5

R Supnose H is a real Hilbert space with inner product {:,*)
sz and norm |l*Jl, respectively, and suppose we are given two symmet-
e .

! .

h ric bilinear forms B_.(u,v) and D{(u,v) on HxH. B.(u,v) is

@k 0 0

assumed to satisfy

< (2.1) lBo(u,V)l s ClﬂuHHVH, vV u,v < H
o
™ and
a
2
2.2 C u < B,{(u,u), v u= H, with C, > C.
) (2.2) , lhul olu.u) »
~.
N
1& It follows from (2.1) and (2.2) that (u,v)B = Bo(u,v) and
3
3 1/2 . .
” tuall = (B.(u,u)) are equivalent to (u,v) and lui, respec-
;T BO 0
,i tively. Regarding D, we suppose
o
\ {2.3) 0 < D(u,u), v 0 = u = H,
g~ and that
2o 1,2
o (2.4) futy = (D(u,u))
“
W
;3 is compact with respect to {i*l, 1i.e., it has the property that
i from any subsequence which is bounded in |-, one can extract =
oo
;; subsequence which is Cauchy in H'HD
M
ﬁc We then consider the variationally formulated, self-adjoint
i !
2 eigenvalue problem
% )
2 ]Seek i(real) and O = u - H such that
(" (2.58) q
o LB (u,v) = \D(u,v), v v - H.
LWy O
L2,
':')n
jﬁ Under the assumptions we have made, there is a sequence of eigen-
N
N values
" ) "
‘..u: 0 < 1 \2 G
$ L]
R
vy
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W
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e

and corresponding eigenvectors

1"72°
which can be chosen to satisfy
= \ =
(2.6) Bo(ui,uj) iD(ui,uj) )i,j’
where ﬁi 3 =1 for 1 =3 and 6ij =0 for 1 = j. Further-
more, any u - H can be written as
X
2.7) u = Z a.u., with a, = B.{(u,u.),
( h 593 3 O( J)
j=1
where (2.7) converges in H-HB The eigenvalues . satisfy the
O o

following well-known variational principles:

u,u ,
= min 0 -
us H ! 1'71
(2.8)
\,o= min Bo(u,u) = B(uk'uk) , k= 2,3,...
k W H D{u,u) D(uk,uk) t
Bo(u,ui)=0,
i=1,2.,,,k-1
{the minimum principle)
and
B_(u,u) B .(u,u)
\k = min max E%G_ET_ = max 5%3—37" , k= 1.2,
V,.-H u-:Vk ! uaUk=sp(ul,...,uk) !
dim Vk=k
(2.9)

{the minimum-maximum principle).
For any ‘k we let
(2.10) M(\k)={u:u is an eigenvector of (2.5) correspcnding to

We shall be interested in approximating the eigenpairs of

(2.5) by finite element, or, more generally, Galerkin methods.




Toward this end we suppose we are dgiven a (one parametric) family

{S“)O<H-1 of subspaces S_ H and we consider the eigenvalue
ad ad “e
problem

" ;

:Seek v, [real: 0 = u,_ : Sb such that
{2.11 g :

:BO(uh,V) = ’L‘D\dhlj)l vv_— Sh-
The eigenpairs f~k,uht of (2.11) are then viewed as approxina-
tion so the eigenpairs (' ,u! of (2.5). {2.11) is called the

Galerkin method determined by the subspace Sh for the approxima-
tion of the eigenvalues and eigenvectors of (2.5). We will alsc
sometimes refer to problem (2.11) as the Galerkin approximation »f

the problem (2.8). (2.11) has a sequence of eigenvalues

0 < o SO N = dim S_,
: h

“h,1t Yn,20 0 YaN
which can be chosen to satisfy
. { - S)o= 0 . , L)o= o , 3 o= 1, N
(2.12) Bo\uh,l uh,J) h,lD(uh,l uh’J) i3 i.3 N

Minimum and minimum-maximum principles analocgous to {2.8) and
{2.9) hold for the problem (2.11); they are obtained by replacing

H by S and letting k =1,...,N. We will refer to them Guy

h
(2.8*) and (2.9*), respectively. Using (2.8) and {2.9) =cgether

with (2.8*) and (2.9*%) we see immediately that

(2.12; b kK =1,2,...,N = dim S,_.

For every ! we let




M1
(2.10%)

)

= {(u:u 1is an eigenvector of (2.11)

h,k

o ‘pk!e

Because of (2.1)-(2.4), O is an eigenvalue of nei

nor {(2.11). It will be convenient, however, to introduc

A
0]

notation Q.

A
h,0

In what will follow we shall assume that the family

satisfies the approximability assumption

(2.14) inf nu-rHB —0

2€Sh 0

as h—>0, for each u H.

It follows from the variational principles (2.8), (2.9},

and (2.9*), and assumption (2.14) that

h,k
each k.

b

i

Our analysis employs two functions ¢(') and

(\

i

non-negative real variable A which are associated with

~
r4

eigenvalue of (2.5) and (2.11), respectively. We define

{2.15)

and

It is immediate that the functions are non-negative and

i A

n and that

-

${(v) = 0 1if and only if \j for some

and

d \ = i i
'h( ) 0 1if and only if h, j for some

In the following lemmas we give characterization of

10
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uk n which do not invelve the eigenvalues 3 and h,j’ respec

e tively. For O - V% < v and u,v = H define
¢
% (2.17) B(\,u,v) = By(u,v) - iD(u,v).

Y We now have

Lemma 2.1. For all 0 . 1 < «x,

(2.18) (V) = inf sup iB(y,u,v)].
¢ w: H v=H
4y fall, =1 full, =1

Bo Bo

" Suppose \k has multiplicity q, i.e., suppose

- k-1 ° 'k T 'ke1 T 0 T Ykeqge1) € lkeq

e Then, for
"‘
-~

;ﬁ (2.19) Vo=

1
}q we have

4
ﬂg‘ (2.20) (V) = (1 - ~—

J and

' ¢(V) = sup |B(\,u,v)]

v vl =1
I#:l Bo
L (2.21)

id
Ji Proof. For u,v - H write

K\ Then

.

"“-'--

. ~
J‘di Do o S A A e el o

oo ""Jnn’f-qi‘-.thf
Ql




;$ Thus
,f -
(2.23) sup {iB(V,u,v)| = L

v=H .
J

Ca

v -
a (1 - L—)le/z,

=1 J

@; HVHBO—I

Kot from which we get

P inf sup |(B(\v,u,v)| = inf |1 - —[ = é(1).
e u<H v=H j=1.2,... j

S fall g =1 v, =1

:‘i'::l B 0 B 0

This is (2.18). {2.20) follows from the definition of +$(:) and

\
Vﬂ an examination of the graphs of |1 - T_l for § =1,2
fa"‘l J
o {2.21) follows from (2.20), (2.22), and (2.23).

o In a similar way we have

Lemma 2.2. With H replaced by Sh, \k by \h,k' and Uy

At Uy g Lemma 2.1 holds for éh(\). (Relationships analogous to

by

those of Lemma 1 will be indicated by an asterisk.) z

o If is an eigenvalue of multiplicity g, then 1 e,
P k h,k

) \h k+q-1 could be multiple or simple. The graphs of ¢(\) and

:Q‘ @h(\) is given in Figure 2.1

-~ E -~
T‘.‘ k' x",‘ A"l.1 A‘ xhyﬂ \ | -A xh{ tkh K xl"h“io!
{' Ah:ki-l \ hk; ] » Koot
:2 A

SN ki ?\k xki )\k,‘oqﬁ)\ki.‘

- Figure 2.1. The graphs of %(1) and ¢ (V).

M ~ - -y . T PR PR ST YR Rt N, 4 Y
‘ . [y ht ; ’ % v A A N AR VRNIN Gt O
syt t"‘ “”“"A‘ ""‘.""‘."«‘.‘l".‘-.v ‘ ’\".'x -'\"y"‘e‘ﬁ .»..l‘ l‘l’l S‘fl‘!'.‘ ’:!'.'*. 3 l’ﬂ. .“!‘A -’I o0 V5 l‘o R X v k i 1” A0 ! » 1.%



We end the section with a lemma that expresses a fundamental

property of eigenvalue and eigenvector approximation.

Lemma 2.3. Suppose (\,u) 1is an eigenpair of (2.5) with llullD

1, suppose W 1is any vector in H with kuD = 1, and let

Bo(w,w). Then

(2.24) U= gw-ull? - weuf 2,
BO D

(Note that we have assumed u and w are normalized with respect

to ||l here, whereas in (2.6) and (2.12) we assumed ui and

D

u are normalized with respect to u-uB )

h,i 0

Proof. By an easy calculation,

2 2 2 2
Ilw—ullB - «\Ilw—ullD = HWIIB - ZBO(w,u) + llu:lB
0 0 0
2 2
= Miwlip + 21D(w,u) - \julip.
Then, since
| = =
,IWIID llullD 1,
w2 o= 1
0
a2 =,
0
and
Bo(w,u) = \D{(w,u),

we get the desired result.




3. The main result.

For i = 1,2,... suppose \k is an eigenvalue of (2.5) of
i
multiplicity q5- i.e., suppose
\ <\, =\ = ... =1 L, < =\ .
ki 1 1\:1 Li+1 ki+qi 1 ki+qi ki+1
Here ki =1, k2 is the lowest index of the 2nd distinct eigen-
value, k3 is the lowest index of the 3rd distinct eigenvalue,
etc. Let
(3.1) £, 4(h) = inf inf Hu-rHB . J=1,....9,.
- g - ) + = -
u_M(\k.) t Sh 0
i
hall g =1
Bo
Bo(u uh,k4)'= ces = Bo(u'uh,ki+3—2) =0

The restrictions Bo(u'uh,ki) = ... = Bo(u'uh,ki+j—2) = 0 is con-
sidered vacuous if g, = 1. Note that £y 4 < £, and = ,,q, =

- ’ l 4 pe
Z( . Where £ and ;\ are the guantities introduced in Sec-

i i i

tion 1. It is the purpose of this section to estimate the eigen-

value and eigenvector errors for the Galerkin method (2.11) in

terms of the approximability guantities Ly ;th).
tJ

Theorem 3.1. There are constants € and ho such that
(3.2) -\ cc? (h), YO <h . h. i=-:1....¢

ki+j—1 h,ki+j—1 I S ! I ¢ I - TR
and
(2.3 iy -u | N ofe h), Yo <h < h , i=1,....¢. .
(220 Y 43-17% K, +j-17B g, 30 Yor - 3

i i o]
i=1,2,... . To be slightly more precise, the eigenvectors
u,,uz,... of (2.5) can be chosen so that (3.3) holds (as well as
(2.6)).
- 14 -
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Proof. Overview of the Proof. The complete details of the proo

which proceeds by induction, are given below. Here we provide a
overview. In Step A we give the proof for i = 1. The proof is
very simple in this case and rests entirely on the minimum prin-
ciple (2.8*) and Lemma 2.3.

The central part of the proof is given in Step B. There we
prove the theorem for i = 2, proving first the eigenvalue esti-

mate (3.2) and then the eigenvector estimate (3.3). In particul

in Steps B.1 and B.2, estimates (3.2) and (3.3), respectively, ar

proved for Jj = 1. We further note that the argument used in St
B proves the main inductive step in our proof, yielding the resu
for i =1+ 1 on the assumption that it is true for i : i T
be somewhat more specific, in Step B.1 we prove (3.2) directly ¢t
any i 2 2 and in B.2 we prove (3.3) for i = i + 1 under the

assumption that Jfu,_ ., - u.ll, —0 as h—0 for i . i (cf.

hIJ J BO -
3.386).

Details of the Proof. Throughout the proof we use the fact that

£,

n

ar,
e
ep
1t
o

or

fi j(h) can also be expressed as
¢, .(h) = inf inf fu-t

1.3 u-:M(‘\ki) .-sio

(3.1 HuHBO=1 B (),uh k, =.. =Bl cion =3
\ = = =

Poltriy i BolWrly o 43-2170
Step A. Here we prove the theorem for i = 1.
Step A.1. Suppose \k (k1 = 1) is an eigenvalue of (2.5) with

1

: . : ] = 1 3 = | !

multiplicity q,. i.e., suppose i 2 a, q,+

'.'-!_ . -j\._ P .'l " ‘ .' ~ N \ . 'ﬂ‘ﬁ 1 h
"- h G n i X OH !'a. L Wt 8 'n“'-‘:’t‘. NI '\ '4\ “"' Ol W "'0‘»'0 by '\. A o’. -'f. W miadad g,

Rt d

-(‘:I : 1’3 \f



In this step we estimate \h,l - \1, the error between by
the approximate eigenvalue among \h,l""'\h,ql that is clo
to \1, i.e., we prove (3.2) for i = j = 1. Note that
Tq,1(h) = u:&?fl) iggh Hu-»HBO
HuMBO—l

3
ana

sest

is the error in the approximation by elements of S cf the most

W

ad

easily approximated eigenvector associated with .

From the definitions of £ 1(h) we see that there is a
z M(\l) with “uh”BO = 1 and an sh = Sh such that
Y 0 - = &
(3.4) Huh Sh“BO 'l,l(h)
Let
u . s
3 = h s = h

h
fm = = vyD(s,,s, )
D(uh,uh) h’'~h

By the minimum principle (2.8*) we have

13.3) ‘h,1 T 1 BolSpesp) ooy
Now apply Lemma 2.3 with (! ,u) = (\l’ah)' W o= s, and ¢+ =
Bo(sh,sh). This yields
BolSprSp) =ty - disyuupig = vylisy up g

( \ 0
{3.6) ,

sy aiE o cks, LGl

0 0

{3.4) - (3.6) yield the desired result.
Step A.2. 1In this step we prove (3.3) for i = j = 1. Let
ul,uz,... be eigenvectors of (2.5) satisfying (2.6). Write

L3
Ny




-0 8§,
RRLUU M AN

X
= (1

j=1
From (3.6) and (3.7) we have
- X X
| \ ] 2 2
‘1-\ ! Z fa(.l)] < Z [a(.l)] (1=-1_/\ )
- 1 j=q,+1 j=q,+1
1 1
2
- Z[ (1% 1y A )]
= J !
= 1B(Y Up, )
= |B(t uh,l) (\1 \h,l)D(hh,l'uH i
- -1
= (\ 1 \ ) h, 1
- C&lll(h)
Hence
q,
= (1) [ - (1)1211'2
u a u = a
h, 1 ZJ i, Z(J J
j=1 j=q +1 i
(3.9)
, -1:2_ .
= GOl = vy g ) SEPEREE
9,
z a{l)u.
L j=1 7 J
Redefining u, to be g , we easily see that
1 zl allly I
=t 3 %0
quHB = 1, so that (2.6) still holds, and
0
. | - Il o 3
(3.10) "Uh,1 T Y1'B Cry ()

0

Note that u

as desired. 1

may depend on h.

Step A.3. Suppose q1 - 2. From (3.1") we see that

LRSI N T T AT AT AT A
\- e J' Ry Lot AT "ﬂ):_:;i

...... Rk o { SO
135;1;a-sf, ;f«f.ﬂh \Yxttfxﬂx

s ]
A A

e |
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. = i i lfyq—1t Il
(3.11) 112(1'1) inf inf T !“Bo’
uEM(\l) :ish
Bo(u,uh'1)=0
Choose uh z M(\l) with ”uh“Bo =1, B (uh h, 1) = 0 and Sy,
Sh with BO(sh’uh,l) = 0 so0 that
/ 5 - = -
{3.12) !luh sh”Bo allz(h),
and let
N Uy - Sh
u S e——, S S —
h A h vyD(s, ,s, )
vD(u, ,u,) h'"h
h’"h
Since Bo(sh,uh 1) = 0, from the minimum principle (2.8*). Lemma
2.3, and (3.12), we have
(3.13) A “ Is, - all® < ce2 _(h)
) h,?2 2 h h BO - 1,2
This is (3.2) for i =1 and j = 2.
Step A.4. In Step A.2 we redefined u, . Now redefine Ugreov Uy
2oy 53 gq.
sc that u,,...,u are B_-orthogonal. Write
1 q, 0
X
= (2)
Un, 2 ’Zaj b

j=1

Now, proceeding as in Step A.2 and using (3.13), we have

2
(1 - \2/ q, +1 EE: fa } ; EE:L 32)} 2/‘j)

q +1 i=1




Thus

' ' _ (2) s
5;':% (3.14) ]Iuh,2 Zaj uj“B = Cal'z(h).

1Y j=1
¢
Y But by (3.10),

[
]

o 1 Bo(uy,201y)

Al = BolUy, 209178, )

n

(3.15) flu lu

If -u I
h,2"By" "1 "h,1 By

[

Csl'l(h)

"o

e

.’v‘l;’v - . e -8

s C£1,2(h).

£o b

Combining (3.14) and (3.15) we get
9 9

) (2) ) ) (2)
- Iy, , Zaj agllg <l , N T LYW
Syl j=2 j=1

5
2

S Redefining u to be

., wWe see that |u

at j=2

and Bo(ul,uz) = 0, so that (2.6) holds and

! , -
% {3.16) lluh,2 2
y which is (3.3) for i =1, j = 2.

X0 Step A.5. Continuing in the above manner we obtain the proof of

A (3.2) and (3.3) for i =1 and j = 1,...,q1.

. e Step B. Here we prove Theorem 3.1. for i = 2.




s L a e T At LAl o b B Lo Sl bl Aol dad Aas Lol Sak dal onll el 2ol Aol hed
I'.
A
o

0

"
;% Step B S \ = i i

ity ep B.1. uppose % (k2 = q1+1) is an eigenvalue of (2.5) of
i3 2
multiplicity q,- In this step we estimate \h r T ‘k , the
WY 2 2

e . |

N\ error between ‘1{ and the approximate eigenvalue among

(L. 2

0

X \ . \ i \

- hok,' """ ‘h.k.+q.-1 that is closest to K Note that

; 2 2 72 2

p : (3.17) »'zll(h) = inf inf ”u_,”BO

c v =My, 1~:Sh

t‘,\ *\2

falf, =1

o %o

n Writ A \ A \ a

2 rite = rN , _q = , + an AT
-‘, I<2 1 1‘2 h,kz 1 h h,kz h,k2 h N
Then 0 <+ <1 and ¢, - 1. Let . _ = “— . From (2.13) and
. h h -1

Cal 1++#

2 s = - .
'.f: the definitions of \k and \h,k in Lemmas 2.1 and 2.2, respec-
0
)\' tively, we see that

o
"N -
{

§¢ {3.18) \kz < \h,kz,

R,

’: A simple calculation shows that

')'. e T - T 'k

s 2 1+¥ 2

::."", and
e 20

1'. ‘\- = h A = 4, 1\

W h.k, A e % h'k,
H "h
o
ic Hence (3.18) shows that
i)
l'?. 2_ Lok h
Ny 1+

,- Since ! —  as h——0 (see Section 2}, we see that

:.{- h,j J

e bo—t , 9 ——1, and =« ——2—-—— as h-—0. Thus, noting that
oy h n h 14 -1
2_, < 1, we see that we can choose ho such that 0 < h < h,
l'-'.l 1+f & -
: implies that
&
ﬁ.'
1':". - 20 -

&~
)
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2_1+1
2 1+ 1+43¢
(3.19) b — ER A Z = - < 1.
14 1 h 2 2+2¢
From (2.19), (2.20), (2.19*), and (2.20*) (see also Figure
2.1) we get
- N -~ 3 ;
3 'hok,| 'hoxy
0 - & (V.. ) - e[} ) = |1 - -1 - |
h h,kz h,k2 @h\k [ ! V. z
L 2 2
_ _ -1
= wh(l Py )
and hence, using (3.19), we get
\ -\ = (9. -1)
h,k2 kz k2 h
{ - To-t
\ $, (A ) v,V
) k2L h h,k2 h, 5. h
e (T - LRS!
1 R ) ¢ (1 W L
(3‘20) Lh h:kz 41,.2 J h
P - T -1
Vooore (1 ) = e Lot
‘ kzL h h,kz h,Az !
: . : - —
- - I \ -
! L¢h( h,k Pk,
2 2 -
< 2\k[§h(\h,k IR T :
2 2 =
provided that
(3.27) (6, (T ) o- e (T AR
n''h K, hk,’ |
We will now show that
(2.22) ¢, (Vv ) - (Y ) e % (n) for h
' h' h,k h,k o2, e
2 2
where C depends only on ‘' , | , and ! ., and, in particular,
1 k-1 k2
- 21 -
------------- RISy
|l'.-1
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ity

‘N

ot is independent of h, and h depends oniy on ‘' _, L Y
“ 0 1 k, -1 IN
'v‘ 2 2
it . and the approximability of the eigenvectors in M(\k ) by SH'
LI _ _ 2

\4 .. . , = \ i = 1 I =
@ As in Step A.l1, choose vy, M ( k2) with HuhHBO and v
.‘\'

‘I

L Sh such that

‘~ 13.23) iluh - shilB - ?‘z’l(h)

-.". O

;; We see that Sy is the Bo-orthogonal projection of 55 cnte
1 Sh’ i.e., that
_*i

\] -
o (3.24) By(Q, - s,,v) =0, Vv=s,
3
3

A T = -
e Let wh uy, Sy, Then
S
S (3, : i | -

£ (3.23; ‘lwh'|BO 2,10

Sj and

{3.26) s, Il = sl + fw = lu =1
+1 h B, h'B, Bo h B,
.,Q.
Next we write

‘L _
- Sh T “n%nh t &nv
:} where

>,

\ = —
-~ Bolup-ep) = O
{ -
}~ i.e., we let Sy be the B_ -orthogonal projection of s, 2n*o
K. o
Yy . = _ 5

s span (uh,. Let ry { ch)uh. Then

= - > \ -

o Wn = Tp T ey Bley.ry) =0,
‘.‘

N which implies
5.‘ 13.27), P T
nd h BO h BO
'hs Furthermore, using (3.24), (3.25,, and (3.26) we have

£

N
,'fu
s

i - 22 -

11

&
e

y % AW e -v e o 'I' - 'P'-'-,-’-‘.-{ ) .-‘_ f " .t e e :.'.;f.».f_;“,-!_..‘__(
fu._n.,.!., Wy .\,,c ,.‘. n'n.‘u',‘.o:‘,n,.o"ﬁ,_n‘,. M #" g, M ., e R Y R S, e ‘_,h
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T TTTwow ey

h h Bo
and
= 1 a - 1 \
°n T Bolspup) = Boluy = Wy uy)
= |— 2 - 1 3
.IuhllB Bo(wh, n'
0
201 = w, I
R o
[ BO
= - fhi
1 2,1 B
o
> 0, for h < ho,
with ho sufficiently small. Thus we can assume
1
0 < ch <
Alsc,
(3.28) ey = lw 2 .
0 0

To see this we refer to Figure 2.1 and note that

fr | = flw 1l cos
h BO h Bo

and

I = |lu

1%
h Bo

sin 3§ = cos .
”B

a By

From (3.28) an the definition of rh we have
'S

(3.29) c 1 - lIw

i 2
h BO




o Figure 3.1. Configuration of r

- Assume now that uk = ﬁh (redefining uk, if necessary).

e Write
X

Ky .

! °h = qu“j' v = ij“j'
j=1 j=1

Then

E) T = ot
o B(\h’kz,sh,v) chBO(uh,v) + Bo(eh,v)

) - - -
{& . - \h'kzchD(uh,v) - Ah,k D(e

2

V)

) =c. b +qu \ \,,7¢, b
: b7k, 4 3] hik,y k,"n7k,

e e  a” " a -(' e ¢ -;- . "
MDA ~,.$‘,. '

Ud

vhe o AN
W n A "5..‘ AX




and hence

sup  [B(V, . .s,.V)I - sup sB<Th WENAE
_ ’ 2 : ’
v_Sh v=H
fivig _ T
Bo-l Bo-l
SR 172
(3.30) = [c Ll - L M
h h,}\z 1\2)
> 2
27 - -1,%,1 2
D ECH N
j=1
:kz
Combining (3.27), (3.29), and (3.30), we get
su IB( s, ,v)| =« ((1 - w2 9% - 7 SR
P h.k, n’ ol n's. /ot hox, k)’
v=S -
h
vy _
Bo—l .
+ sup {1 ‘h Kk _1)2 z qzi
J=112/- "2 k J-—'l J-‘
:kz
-
{ - x2 2/ -1 “1\2
. L\1 nwh.Bo) (1 ~h’k2 -
- T n ~ -1 2
+ sup (1 R S |- S e
j=1.,2,... Bk, Ky hiB..
K2
r 2 2.2 -
-_ | - | ) . \
= l_(l Itwhnaﬁ) b n,x
+ sup (1 TH I ~;172iwk i o
j=1.2,. T2 Pz * e
%2
= Q.

Thus, using {(3.25) and (3.26), we have




2 2 -
s 1 - \
[( HwhHBO)¢ ( h,kz)
~1,/2
- -1,2 2 2 -1
+ sup (1 - 1 Vo) Slw s (1 - w1 T
j=1.2,. hiky K "By h'Bo" ]
1'2
2, - 12
= I '
L§ (\h,k ) +"2'1(h)] '
2
and hence
_ ) Re2  (h)
(3.31) ¢ (v ) ¢ (1 L) - )
h h,gz h,Lz 26 (T, . )
.,t\2
where
R= sup (1 -7, A h)(1 - (a7t - ef(T, )
j=1,2,... T2 T2 ' T2
:kz
One can easily show that ———:5———— is bounded independent of h;
24 (1 )
h,k2
in fact, using (2.20) and (3.19), one can show that
21 \
k k
(3.32) _R : 2 5 : I
2@(\h'k2) 2\1(1-t)[1*£2,1(h)] \l(l—r)
provided fg 1(h) < 1/2, i.e., provided h < ho for ho suffi-
ciently small. Hence, combining (3.31) and (3.32) we get
(2.33] by (T ) - (% ) ¥ £ 2 . (h)
[ A » < ——— ’
h h,kz h,k2 \1(1_() 2,1
which is (3.22). Combining (3.20), (3.21), and (3.33) we have
(3.34) \ - A : C:2 (h) for h h
' h k, k, ~ 2,1 ’ - o

where




X4
o
".:
ALy
A
:.I 2\ 2
5&, _ k2
20 (3.35) C = ——=%
S . \1[ (1-¢€)
) C . .
1~g This is (3.2) for 1 =2, j = 1.
R~
fra Comment on Inequality (3.34). C in (3.34) clearly depends on

A

™

(B : : : .
i \1, \k Y and \k , but is independent of h. Note that if we
:,:' 2 2
&?' were considering a family of problems depending con a parameter

i‘Q'

) we could bound C = C(¢) above, independent of =, provided .
LA h
;i; = ‘k (r) was bounded above, \1 = \1(?) was bounded away from °C
b\ <3 2
e

1
ﬁh and + = r{1) was bounded away from O and 1. It follows from
LI,
e (3.31) and (3.23), that (3.34) is valid for h . h,, where i
o

y
N depends only on {_, 1 ;A ., and the approximability of the
-tu:;' 1 k2—1 k2
B . P - i

T eigenvectors uj, j = k2,...,k2+q2 1, by Sh' For a family of
o problems, ho(r) could be bounded away from 0 if 1\, (:r) was
DY) -
o bounded away from O, ', (r) was bounded above, ¢£(r) was bouni-
o) T2
R ed away from O and 1, and the eigenvectors u, = uj(r), j=
J

;?| k2,...,k2+q2-1, could be approximated by Sh’ uniformly in
?Q Step B.2. Suppose, as in Step B.l, that ‘k has multiplicity
'::k, 2
{.‘ d,- We have shown in Step A.5 that we can choose the eigenvectors
d‘r-'
\ﬁ{ d, U, ... of (2.5) so that (2.6) holds and so that
..:'E

, ; - ! i = ok —1.

- (3.36) "uh,j uj'lBo C 1'j(h). J 1,00y 5,1
:Eﬁ Write N
:4,' (3.37) uhk = zaj uj.
:i e j=1

soxt From (3.37) we have

?-?
e
5 - 21 -
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. (k,)q2
22 T o=y ey ey
- 2 2 2 2
j=1
= | B(A Py gy )
h.k, “h,k, “h.k,
+ (\_ -1 )D(u - lu Yo )
k2 h,k2 h,Lz h,mz
-1
= (A - A ) L
h,k2 k2 h,LZ
which, together with (3.34), vields
k. -1
2. (ky)q2 2 (k)42
(3.38) !}E a (1 - /YY) + EE a (2 = .. v
k2 J | Ko
=1 j=k_+q -
J 279,
2
- Ctz’l(h)

Note that the first term inside the absolute value is negative and

the second is positive. 1In addition

C, < 1 -1 ;kjl < C2, Vj = kz, k2+1, ey k2+q2—l,

with Cl,C2 positive numbers. Hence from (3.38) we obtain

k2—1 N
r {Ka)q2 2 » r (Rp)at
(3.39) La } « Dlazll(h) + D2 E: La J
j=1 j=k,+q,
and
, k,-1
- (kp)q2 » 2. (k)92
1 - \ I “ !
13.40) [a ] - D3'2,1(h’ + 03 La j
J=k,+q, j=1
Write
v
<
— 11 - )3 = - =
(3.41) uh,i ui bi,juj’ i 1, ,k2 1 q1
i=1

Then, by (3.36),




) (3.42)

(3.43)

Using (3.

an {3.44)

b

S

Since (2.

o an

that the

- e

small,

moreover,

EOLA AT,

that

(3.45)

Now, from

5
W5 L) o ‘~|' ‘. l‘p

and hence the system

"—'!’n . l'n.!"q'l‘!.!‘q,\..

P>

-1

k2
53
1
1

i,

41),

k2—1

j=1

: . 2
implies ¢

14) 2,1(

h)—>0 as

b

. . are small for h -
J.,1

ho,

(3.44)

there is a constant L,

k-1

P

>

—

Lj:

1

we obtain

(3.36)

e

\"-\

'-)‘ ) .(,,'- -

.4' "-

4

.0' .l [N l‘ '

h—0,

[
o1 b

these equations can be written as

with ho
is uniquely solvable,

depending only on K

[

)Wfl
|
]

from

r-**

-1
2

[y

4 L- -1
P N N
-

(3.42) we see
sufficientliy

and,

<o such

LR
l‘!-

-

vf Q‘
1) Oq"ix ‘h“u"h |'g.




Letting

k2—1
2 _ 2
(3-46) pkz(h) - z “-i,j(h)r
j=1
we see that
k.-1 ,
2 '-kz)\,z 1/2
3.47 a. < C h),
( ) [ j ) Dkz( )
j=1
and thus, from (3.45)
kol 40
(3.48) {Z u.ZJ . LCo, (h)
i k2
j=1
- Cp, (h)
k2
Now let
k2-1
{3.49) B, = uh,k2 - ”juh,J
j=1
Then 1 = Sh’ Furthermore, from (3.43) and (3.44) we get
,’o, ik, -1
}
{3.50) B (u,,1) = ! k
|

<2
-1
(k) &
az-—Zub i
{ i T3 i 2
. J:l

From (3.48) and (3.49),

Sy ) o=l
BO BO

({3.51




, e - e hdadie i e i dh i

J Using (3.34), (2.21*), (3.50), and (3.51), and the fact that

; ¢, (h)—0 as h—0, we get
2

N (3.52)

u“
I
(@]
[0)]
~
N
TN
)
~
'\
|
'\/] N
wh
(o2
o
s
‘o
)
(39}

& =ka*q, =1 -

- where C' > 0 and is independent of h. <Combining !2.42) TLaEY

(3.4 |, and (3.52) we obtain

‘. Al12
(3.53) ,) w2 7

: 2 0 !

I‘. . !
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x
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L 4

L4
. {2.53) is a quadratic inequality in
i |

solution yields

(3.54) thy.

4
1
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~
N
—1
N
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Combining (3.39) and (3.54) we get
k2—1 k
r ka2 2
Z Lai ) . Dl{'z,l(h) + D.C¢
i=1 i
and thus, since fl % _1(h) is small for
k2—1 1
Al 2 < 02
(3.55), [ai J < D5”2,
i=1
Next, combining (3.40) and (3.55), we get
X
r (ky)y2 2
(3.56) X (a{ J + Dgr s
¢ = )
kp*a,
Finally, from (3.37), (3.55), and (3.56),
k_+q. -1 kR -1
2 2
2 (k) 1 (x
iy 3w = [ Y
h,xz J | .
j=k2 L j=1
C ‘h)

Z a, u,
J__.kz o J
Redefining uk2 to be T -1
2 TRy
b 25 U3l
]—k2 0
i, so that (2.6) holds, and
(3.57) a0 - u, c .,
h,“z L2 BO 2
This is (3.3) for i =12, 3 =1
P 33 -
R PP AL AL S
N

2-1

[ai 2 J + D,C¢

=1

h small,

we have

.

0N

(hj,

ba




Comment on Estimate (3.57). In the proof of (3.57) we used

{3.36), which was proved in Step A. A careful examinations of the

proof of (3.57) show that we that we did not use the full strength

of (3.36), but only the weaker fact that |u . - 4., —0 as
h, j 3 BO

h——0 for j = k2—1. (Cf. the Overview of the Proof.)

Step B.3. Suppose 5 - 2. In Step B.1 we estimated ‘e T

\ i i \ -

kz. In this step we estimate h,k2+1 k2+1'

We proceed by modifying problems (2.5) and (2.11) by res-

tricting them tc the space

h,k2
H = {u <= H : Bo(u,uh,k ) = C,
2
and
h,k2
Sh = {(u = Sh : Bo(u,uh'kz) = 0},
h,k2
respectively, i.e., we consider the problems (2.5 ) and
h,k2 h, k.
(2.11 ) obtained when H and S, are replaced by H “ and
Bk, hk,
Sh in (2.5) and (2.11), respectively. (2.11 ) has the
same eigenpairs (\h 5 uh j) as does (2.11) except that the pair
h,k2 n,k,
(‘h,kz’uh,kz) is ellmlnated. (2.5 ) has eigenpairs ‘\j
h,k2
u, ) which in general depend on h. Nevertheless,
h,k2
(3.58) \ = , t = 0,...,3_-2,
k2+* k2+l 2
i.e., .k . the eigenvalue under consideration, is an eigenvalue
2
h,k2
of multiplicity q2—1 for problem (2.5 }. Its eigenspace Is

24
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h,“2
M (Vo ) = {u - M{v, ) By(u,u ) = 0}
k2 kz 0 h,kz
We can now apply the argument used in Step B.1 to problems
h,k2 h,k2
(2.5 ) and (2.11 ) and we obtain (cf. (3.34))
(3.59) ! - cx2 _(n), for h < n
: h,k,+1 ky+1 7 T2, o
h,k2
Since Uy g depends on h, the problems (2.5 ) and
h.k,
h,k2
(2.11 ) depend on h. It follows from the Comment on Inequal-

ity (3.34) with t = h that we can apply the argument in Step

B.1 obtaining C and ho that are independent of h. To see

h,k2 h,k2
this, note that = ! , by (3.58), i o, by the
k2 k2 1 1
h,k h, k h,k
c - . : 2 2 2 , _

minimum principle, and « =\ /A —) I = as

k.-1" k k-1 k

2 2 2 2

h——0, by the minimum-maximum principle and the fact that =, ..

h,k2 ‘
—U,, {cf. {3.57)), and hence ‘k is bounded from above,

2 2
h,k2 h,k2
i, is bounded from below, and -« is bounded away from ¢
h,k,
and 1. Then observe that the eigenvectors in M “(+,. )} can %e
approximated ktvy Sh, uniformly in h. Note that in Ster B.1 we
also used the fact that ‘n 3 —, as h—0 for j =k, - _
' v &
and k,. It is easy to see that the corresponding fact is “rue in
4
the present context.
Step B.4. Suppose q, - 2 as in Step B.3. Here we show that
] ¥ T RN
Up g Can e chosen sc that ”“h,k ‘1 Uy +1JB C’Z,C(“ We
2 2 2 0

know that
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joa
Ca
1]
[y
Wf£2

- (3.60) i L T :

O
O
jog
.
i
Q
s
.*
b
"
<

:ag (cf. (3.16), (3.14), and (3.57)). Assume that =2

e have been redefined so that (2.6) holds. Write

(k2+1)
a., u
J
1

W
(o))
b

o) A%

uh,k2+l

Il ¥ i

9}5

b

. X

23

If we apply the argument used in Step B.2 to u

we let k2 be replaced by k2+1 and use (3.59) instead cf

»

a ek
Y
ey

3

bl
.

{3.34), we obtain

-

k2+q2—1

(3.62) u . Z AN Cer
! hoky+1 T . 2y usllg = Cry o o(h
J=5,

e ﬂ:‘r,:}“"; b
SO

i

2 AAN

But, by (3.60),

k-2 and hence
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b
&
- Kpraptl (k)
:} < a, 3
\* J=k2+l - o
! Redefining v, [, %o be - - . we see that
¥ }\ﬂ*‘ l\ﬁ+q2_‘ 1.
. I'\' “ < \1\2 )
" {— a S
. j B
::?i j=k.,+1 - J o)
) z
e i | =1, B.(u u.,) = 0 j = 1,. K so that (2.6
..! | k,.,+1“B o( k +ll J) ' J 2: ~ )
V) 2 0] 2
.:ﬁ holds, and
", (3.62; IRb u | . 'hy,
7 ' Ny k2 k,+1"B, = 2,2
¥
. which is (3.3) feor i = j = 2.
N
-
;2 Step B.5. Continuing in this manner we prove (2.2, and !2.3' fcr
o
Rt i =2 and 3 = oo g,
ﬁﬁ Step C. Repeating the argument in B we get (3.2} and (2.3; for
N . .
o i=23,4,... . This completes the proof.
.:__
Remark 3.1. It is possible to use an alternate argument in S+t=2¢
N . . : :
N 8.1 if we introduce the so-called Riesz formulas for +he spectiral
:_‘;
s procjections associated with an operator. We suppose the space H
:,"&
J and the bilinear forms BO and D have been complexified in *the
(
;xé usual manner. Let P, and P»1 X be the Bo-crthcgonal oroec-
o 2 . 2
ACs
.- L] -—
P tions of H onto M ) and @ lM(\ ) t d t <
- ti . h ) he direct sum oF
* K. L h,k,+1 -
0 “ i=0 “
2
- the eigenspaces M1 .0, 1 =0,...,9,-1, respectively
! h,k,+1 2 :
o <
S
a .
GPH Intrcduce next the operators T, T, : H—H defined bty
',';" i :
i ' ;
N T - H !
U ) |
[} \ i
B (Tf,wv) = D(f,v), 7 v H !
. \. O
!
~ and |
S
ie)
o
A
~ |
- - 37 - |
. |
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{
i\‘BO(ThfIV) = D(flv)l vV'Z Sh

It follows from (2.1), (2.2), and (2.3) that T and Th are

defined and compact on H. Furthermore

. (- I . i I -l
(3.64) (T Th)f"B C 1?f HTE thy
0 =S 0]
h
It is immediate that (!,u) 1is an eigenpair of (2.5) if and cnly
-1
if (4 = v *,u) is an eigenpair of T. Likewise (\H’ub) is an
i i
eigenpair of (2.11) if and only if (uh = \;l,uh) is an eigenpair
of Tb' As a consequence of (2.14), Th——aT in the operator norm
associated with ﬂ-HB . Let [ be a circle in the complex plane
0
centered at My = \;1, enclosing no other eigenvalues of T.
2 2
Then for h sufficiently small, [ will contain the eigenvalues
= ;1 i = -
i k. +i ‘hok_+i i-= O,...,q2 1, of Th. Also, Pi and
2 2 2
Ph L which are referred to as spectral projections associated
2

with T and u\z and Th and “h,k2+i’ i= O,...,q2—l, respec-
tively, can be written as

-

N _ 1 f o _my 1

(3.65) P\2 = EFT {z-T) dz

r
and
(3.66) P = oo | (2-Ty) “ldz

) h/¥2 nl h )

T

These are the Riesz formulas. With these formulas we can derive

an eigenvector error estimate which will lead %o the eigenvalue

estimate (3.34).
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" t = VY wi = =

:% Le u = M{ 2! with Hu”o 1. Then vy P],\2 u
! -1

.b | q,-1

EE: M(\h 1 .) and from the formulas (3.65) and {(3.66) we obtain

o X 1
SFE
=

I

<

0
g

1
o
£

-
—

(3.67) =l i! (z-1,) H(T-T_ )22 az|

x,

L $
e

A%
|

‘?1)
\
s

{27 rad(r)] sup Il (z-T
z=r

= (-#, + rad(l') + u _
k2 h,k2+q2 1

p g

CI{T-T_)ul
h BO

LN

{3.64) and (3.67) yield

i | - i -
o lu VhHB . C 1?f BT u-+}4
W 0 ‘:sh
.'

KN (32.68" = C inf puu-1
) t<S / B
. h

N - C inf Hu-ri

1€Sh

0

59

S This is an eigenvector estimate; it shows that starting from any

LS
N 2 M(\Z) with Wuﬂg = 1 wWe can construct a v, = <7 2
$'<

My, Kk +i) that 1is close to u. We now use [(3.88) to prove
EE hok,
&

£ By the minimum principle {(2.8*) we have
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t".':
A'.‘\ .
. A -\ = , -
:"‘. (3.69) h ok K Enf Bo(v v) e
?) 2 2 V=S, 2
R vl g=1
WS Bo(viuy, 4120,
2» i=1,...,k,-1
‘e ‘: qz-l
]
A Since vy = Z %M‘ Kk +i Ve know that Bo(vh,uh i) 0, 1=
0 = h' %2 '
':‘.‘ i=1
]
:::iz: i, ... ,k2—1. Thus, from (3.69) we find
:”"
,‘l:g: v v
‘nok, T 'k, * Bo [nvhn ' t!vhu Ttk
o - 2 h'D “'n'p/ 2
v
: : Combining this with Lemma 2.3 and (3.68) we obtain
e
O
e X2 2 "Wnip jals B! 2 "Vn'p iy
<. 2 :
o [ -
4 - Clvy - ulg |
. 2
-11‘ - C lnf “u—1”
[} '. S BO
’:"‘: '=%h
! Since this is valid for any u = M(\k ) with HuHD = 1, we see
) 2
[N
J that
.
)
/] . . . 2
o \ -\ - C inf inf fua-uli
3;' h'kZ k2 u—:M(\k ) a—:Sh Bo
‘& 2
i hallg =1
{ 0
ol
‘ 2
'k. -C'2'1(h)r
h)
A which is (3.34). We note that the proof given here rests on egua-
-—
j‘,}_, tion (2.24) in Lemma 2.3 and employs formulas (3.65) and (3.66)
e
l-
s - : _ i =
,.‘;,; tc construct Vy T vh(u) that is BO orthogonal to uh,i’ i
e 0....,k,-1, and satisfies
'."
~7e
‘q.,-
e,
k .I - oy
¢ 40
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It < 3
h BO 2,1

We have already seen that the eigenvalue estimates in Steps A.1,
A.3,... can be based on Lemma 2.3. Proceeding as we have here, we

see that all of the eigenvalue estimates (3.2) can be based on

Lemma 2.3.
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4. Numerical Computations.

In the previous sections we have analyzed the errors in the
Galerkin approximation of an eigenvalue problem, concentrating
especially on the case of multiple eigenvalues. In this section
we consider a finite element-Galerkin method for the approximaticn
of a model, one-dimensional problem with multiple eigenvalues,
presenting numerical results and their analysis in terms of the
results of Section 3.

Corsider the eigenvalue problem

s 1 W/
- — S = ‘ = = [ =
{‘p’(x) u (“/Ji ‘q) (x)ul X = I \ ”,n),
(4.1) u(-n) = u(n),
Loulemy = (5 wlm),
L\ J \®
where
p(x) = "—“Ix|1+asgn X, 0 <a < 1.
It is easy to check that the eigenvalues and eigenfuncticons zre as
shown in Table 4.1.
Table 4.1

Eigenvalues and Eigenfunctions of the Eigenvalue Problem (4.1

y
1]

i [ u,
i i
0 0.0 i
1.0 cos o (X)
. 2 1.0 sin @ (x)
! »
‘*é 3 4.0 cos 20 (X)
h 2. 4 4.0 sin 2¢(x)
!\ .\.
A
=
v '-:,:
y
‘ l' L]
o
N - 42 -
@
W

-
N

» i J ) o W )
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Aie I8
i* 1,2,3,4, for <@ = .4. These errors are plotted in Figure 4.1 in
M
ﬁy _ log-log scale. We clearly see the different rates of convergence,
e R 2 1+ 1.4
?ﬁ specifically seeing the rates h and h = h for the
Q errors in \ ., for i =1,3 and i = 2,4, respectively, as
-4 h,i
f&& suggested by (4.2) and (4.3). It should be noted that the esti-
ﬁ{. mates presented in Theorem 3.1 are of an asymptotic nature in that
(A .
(X
a, they provide information only for small h (or large n), i.e.,
d.‘.
%)
4# for h (or n) in the asymptotic range. From Figure 4.1 we see
uh that for « = .4 we are in the asymptotic range guite guickly,
gg say for n . 16.
fl"u
@ﬁ We computed u.h’1 and uh,2’ the approximate eigenfuncticns
-
;m; corresponding to \h 1 and \h 2 respectively, normalized by
\ * ’ ’ .
f* H'UD = 1. The results of Section 3 suggest that 9y should bhe
‘ ’
'hﬂ close to C cos ¢(x) and uh 5 close to C sin ¢(x) (cf. (4.2
o and (4.3)), where C 1is such that C sin #{(x) and C cos ¢{(x)
\"‘.
g -1/
o are normalized by H-HD =1, 1.e., C =n 1’2. To illustrate
iy . :
ol this point we computed Cil) and Cil), i =1,2, so that
J
B, r (1) (i)
D lHu. n - 4 cos ¢ (%) - C, sin ¢ (x)li, . 1 =I.2
RS 1, 5
o (4.4) K(i) = |
'?g ' (i) (1) : TN = 1
!f ”ui,h - C1 cos 29 {x) - C2 sin LW\X‘JBﬂ i= 4
(] o
AN
f is minimal. We would expect that
i (4.5) cl?), ¢4 ¢l (30 g
X ' 1 T T T2
4
»
i and
\_j
“ (1) (2) (3) (4)
2.5 = = = - = i
e (4.6) C1 C2 Cl C2 o .564189583. .
:ﬁ' Table 4.2 shows some of the results for « = .4. We see clear.y
4
:
N
'y - 44 -
O
"'.‘
g
X

- e

h . .‘-n. e

M) e e R - . . ) . e r P " N
I W] (} > F ) 0 1P A AN (VA VRN TR T’ T e W * A
"‘,'.i‘.‘a‘?‘ﬂ‘,,‘h,\‘-» e a’t‘x‘!,‘n’ W '3'\‘5.“. AU L] BN i‘ad"’%ﬁ“\*« A AN &':?"s"‘ R AR AN A’s‘.\'u. Lo tfe iy tchy W Wt




& /
:1 the results predicted in (4.5) and (4.6). The increase in C,
. N
h Cf4), C;l), and C£3) with increasing n is due to the ¢ijen-
PS &

" value solver we used. Table 4.2 also shows that X(1) < X(2) ana
1
| K{3) < K(4), as we would expect.
R

B The last column in Table 4.2 and Figure 4.1 show that the
! ratios

s

i A . .

! h,i+1 - \1+1 _

. 1 — \ 12 1 = 1131

R h,i i

L) increase as h——0. This shows that in the whole h-range we cor.-
Y

ﬂr

Q sidered, the approximate eigenvalues converging to a multiple
H

{

K eigenvalue are well separated.

Y
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i Table 4.2
y
) Numerical Solution of the Eigenvalue Problem (4.1) for « = .4
N | Pl ! o (i) (1) D 'nLien T ias
» AU Y ‘horooor RO 1 ©2 ; YyoiT b
. L i ‘ h,i i
8 5 (1? 1.0716754 | .2704 oi 5637791  0}-.1124891 -161 1.5562955
. 8 ‘21 1.1115481" L3423 0i-.4151973 -13| .5636998 o?
9 » . 5.0394692? 11075 +1j 5558919 of 11317809 -121 1.3342243
- ) 1’ 5.2414639' .1191 +1. .5022638 -13! .5516234 O
R 7 ©, 1.0175850| .1329 0| .5641632 ©O| .1596754 ~12| 2.0041570
P s 323 1.0352431} 11881 0/-.8916589 -12’ 5641519 ct
N |3] 4.2691915| .5259 0, .5636643 0| .1124328 -13: 1.2575043
4 4.3385100j 5869 0-.2689727 -12| .5637697 O
p T1771.004374o§ 6018 -1| .5641879 0| .6411454 -11! 2.5C03837
s oy 2! 1.01137415 11067 0} .1323421 ~10] .5641830 oi
g }3’ 4.0666055| .2589 0| .5641561 0| .1970954 -10: 1.4067517
| l4] 4.0936974! .3067 0l-.7375504 -10| .5641613 0
| I1[1.0010921 .3305 -1 .5641895 O] .7729760 -9/ 3.5190C0:
o " 64 121 1.0038431] .6202 -1| .8670648 -9| .5641883 O
K- r }3 4.0166006, .1289 0| .5641875 Of .3641341 -10/ 1.6437659 |
- b 141 4.0272875: .1653 0! .1415775 -8! .5641858 0. ’
J ) 1] 1.0002729] .1651 ~1] .5641895 0| .4535626 -7, 4.321533C
‘ 2e f2; 1.0013431! .3665 -1 .3251219 -7| .s5641893 O
L ! )3{ 4.0041468| .6440 -1| .5641895 0| .4409247 -7, 2.0107071 |
) } 14! 4.0083380: .9135 —1i—.9 15611 -8 .5641890 O ‘
K i }1% 1.0000682| .8255 -2| .5641896 0| .8070959 5| 7.0542522
?. 5256 fz‘ 1.0004811| .2193 -1| .7269570 -6| .5641895 o§
, !
? | ;3! 4.0010365| .3217 - | 5641896 0! .6435344 "6 2.5705705
37 ; {4, 4.0026645] .5162 -1!-.2601000 -6| .5641895 O]
b
i
:
"
4
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We next consider the case when ¢ = .01. Table 4.2 presents

h the same results for « = .01 as Table 4.2 does for o = .4.

Figure 4.2 shows the graph of

‘
) : \ . L.
+ -

3 lcg h(l ! — \1+1 , i =1,3.

p . X

w h,i i

i as a function of the number of intervals n in a semi-logarithnmic
2

'~ scale. The computed values are indicated by o's and =x's. The
[

Ll . . . . .
X graphs are formed by interpolation {(solid lines) and extrapclation
\ {dotted lines). We note three related phenomena that did not

)

;: occur with « = .4. For small n the approximate eigenfuncticn
R — /

ha associated with \h 1 is uh ' b 1/2 sin ¢(x)., in contrast *o
S ady ’

- / —1 ™

- By o, - 172 s »(x) when o« = .4. We remark that »n ~ ° ccs
£ p(xXx) 1is more easily approximated by Sh than is n—1/2 sin o {=x=)
Vs

%)

5B for all O <« < 1. This anomaly is present for n : 64 and for
L4 n - 128 we get results which are in agreement with the (asymp-
:3 totic) results in Section 3. For 1, ., and 1\, , we have tc

s take n : 256 to get results which agree with the asymptotic

) theory.
)
% For o = .01 we see that K(2) < K{1) for small n{n . 64
W
5 and KX(2) > K{(1) for large n and K(4) < K(3) for small
N n{n.128) and K(4) > K(3) for large n. Recall that X({2} °

o
o K{1) and K(4) > K(23) for all. n when u = .4.
: Finally we note that when ¢ = .01 the ratio
s \h 1 -1

. Ji+ i+

; = 1, i=1,3,

’ A . - A\,
) h,i 1
R
)

first decreases as n increases, then for some n the two eigen-

. value errors become equal, and then the ratio increases again.
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increased over the

that the value n

n- 70 for 1 =1
marks a transition

sin ¢ (x)

te K{2) > K{1) a

1,3, decreasing t

We have thus
in concert with th
range of n consi
ment for small n,
make an observatio
error behavior —

this end we note t

(p,1v8p, 10

and (2.11), respec

(4.7)

If

1 is a multi
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and

0 5
OB

with

- o G g
4% ™ Tt
2N é’q““:.qf-‘l’

YT WY TV Y RIVRT

t to the case for u = 4,

whole range cof n

for which the eigenvalue errors are egqua. —

and n - 16C for i = 2

in each of these situatio

_ a2 os o(x) and u

h

cos 2¢(x), from K{(2)

nd K(4) > K(3),

o increasing.

seen that for «« = .4 the

e (asymptotic) results in

dered, while for o = .01

but are in agreement for

n that further illuminates
the pre-asymptotic and the

hat if (1 with

1,ul),

flu =1,

h,1'p

tively, then
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to 1.} The first inequality in (4.7) follows from the minimum

principle (2.8*) and has already been stated in (2.12). The firs<t
equality in (4.7) follows immediately from Lemma 2.3 with (:.,u) =
¢ = . = 14 - = £ g
\\l,ul), W uh,l’ and BO‘uh,l’“h,l) \h,l' 1¢ v Sy
with H'”D = 1, then from the minimum principle (2.8%*),
\ - - .
(4.8) ho1 «1-Bo(c,«) \1
Again from Lemma 2.3, this time with with (\,u) = (V,,u,), w = :,
and |\ = BO(!,{), we have
2 2
(4.9) Bo(l,&) by o Hl—uIHBO - Aluz u iy
The second equality in (4.7) follows from (4.8) and {(4.9). I% is
clear:- from the above discussion that u, can be any eigenvector
corresponding to \l'
From (4.7) we have
(4.10) 1 - A, < jJr-u H2 - A_{t-u H2 v = S with it~ = :
. h,1 1" 1"8,, 178,y "7 °h iy = -
If 1 is H-HB -close to u,, to be more precise, if is
0

taken to be the Bo—projection of u, onto Sb’ then the secaond

term as the right side of (4.10) is negligible with respect toc the

first term. This follows from the compactness assumption made =
1-”0 in Sectign 2. On the other hand, if uul—aHBO is not small.
‘h,l - ~1 may still be small because of cancellation between =he

%}: two terms on the right side of (4.10). Regarding the case = =

f%% .01, this explains why for h large (the pre-asymptotic phase .

89

‘wﬂ we can have uh,1 = ”—1/2 sin ¢ (x) and K{1) > K(2), and vyet

:ﬁi have \h 1" the approximate eigenvalue associated with u,_ .,

ﬁb , o

e




L
i)
W

.: closer to !\, than is \h o the approximate eigenvalue associ-
- ) -1°2 . e
w ated with uh A cos ¢ (X)), while for h small the =2zymp-
« ad, &

. -1-2 A
pe totic phase), we have uh 1 g cos ¢ (x), K{(l1) < K{2;, and

- '
fj Yy closer to \1 than is Yy X showing that the eigenvalue

\ B : i
o error, 1\, ., - \,, 1is governed by inf |r-u_ |5 .

: h,i i N 1"B
i t——Sh 0
W
N~ This situation is very similar to the situation with =n
oy . .

i; fixed and « wvarying, as can be seen from Table 4.4 where zompu-
)

)

tations for the case .n = 4 are shown. We see that the charac-

v teristics observed in Table 4.3 regarding dependence on = ars
4
- present in Table 4.4 regarding dependence on . Namely, <=he
",

Y . . i i .
{ abrupt switch in the values of CS ), Cé ), the abrupt swistci Tr:m
-

-, K{2) < XK(1) and K(4) < K(3) to K(2) > K(1) and ¥{4) > 23"
? and the abrupt switch from decreasing to increasing ratic c¢f
2

errors near the parameter value corresponding to 'ho T we
'3 mention this situation — « wvarying and n fixed — since i* 1z
K. easier to understand in terms of perturbation theory (cf. Xa+t:z
(5]) than is our original situation — n wvarying and . fiuzel.
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Table 4.3
Numerical Solution of the Eigenvalue Problem (4.1) for « = .01
I Y I cid) { cit) ; lnserT e
E igl h,i L— | 1 2 i \h,-_“
ili 1.05202681 .2338 oi 8181940 -112 .5634386 O( 1.0171143 .
o ‘2| 1.0529172. .2268 0, .5645965 0]-.2916448 -11
/30 4.85762391 .9593 0[-.9346720 -13| .5597529  C. 1.0174233
54i 4.8717141 .9615 0| .5604533 O] .1167277 -1:
L) 1.0128661% 1223 oi 8717399 —1o& .5635957 0 1.0111633
16 ;2i 1.0130098; 1052 0] .5647369 Oi—.8480131 -9
/31 4.2088367| .4650 OE 2507177 —10( 5636658 ° 1.7C87030
'4' 4.2106542| .4577 ©O! .5642694  0,-.3101833 -:3
1, 1.0032139! .7274 -1{—.9345818 -9l .563603: ° 1.70637¢a
3a fzi 1.0032360, .3568 -1 .5647430 o} 1272043 -7
: /3] 4.0515675/ .2384 O .3745461 -9, .5638178 O 1.00572%4
i ‘4! 4.0518629' .2205 O .5644172  0,-.4115543 -3
El% 1.0008063! .5369 ~11-.1311961 -5 .5636032 O 1.0CIT3EC
64 2 1.0008077  .3398 -1 5647430 C) .2462939 -7
1 §3{ 4.0128623! 1343 o: .2743681 -7; .5638240 Oj 1.00383%7
: !4, 4.0129086; .9792 -1 5544235 O .3196:72 -3
| 1 l.OOO20lBI 4196 -1 .5647430 0| .3356056 -5 1.0084427
1128 izi 1.0002031E 4775 —1§ 7414162 —6i 5636032 0
; 3] 4.00321961 .9166 -1 .2379072 ~-6| .5638233 0. 1.30:10820
| 14! 4.0032230 .9745 -2/ .5644235 0! .1197135 -3
I :1T 1.ooooso4; 4372 -1 .5647429 Oi .1061527 -4 1.02°32%4
,5p |2 1.0000515 .4614 -I'-.1553659 -4 .5636031 O
f {31 4.00080541 .5011 -1 .5644233  ©i-.2123273 -4 1.7.1174°0
| 4] 4.0008079) .7741 -1! .1:€5012 -5! .5638238 -
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Table 4.4
Numerical Solution of the Eigenvalue Problem (4.1) for = 3
and for Various o

T | (i) ! (1) n,2 002
Ll - \ . ! [ =
I h,i k(1) 1 | 2 ‘ =%
} 1 S

: |

L 1{ 1.2030785| .4689 0|-.2438763 -13, .5594106 C >.229300C
v ,

! 20 1.2496444! .5161 0| .5594467 O, .000

; i

', 1| 1.2238488| .5017 0|-.8324194 -14; .5562 T 1.13892:%
i 2| 1.2679299] .s366 0| .s585072 ol .000

b s 1] 1.2474367| .5322 0|-.8324194 -14} .556257:1 ° 1. 136754¢
[

{ 2| 1.2713772| .5414 0] .5585072 0l .000

} 75 1, 1.2628455! .5506 0-.1979358 —12% 5526908 T 1.33:42727
i

| 2{ 1.2718555; .5426 0| .5577904 0O .00C
H I !

) bi 1 - - ~ ~~a ~ e
28750 | 1.2715137{ .5605 0]-.7895498 11 5520158  C I.7C1:04%
| 2| 1.2718136] .5428 0| .55768520 O} .5301583 -1:
; .

- ) - ~ N Wt kel

s8779 |1| 1-2717254| .5607 0| .2170355 10} .8519997  ° 1.°0n3iie
| 2| 1.2718105| .5429 O| .5576828  0]-.2773092 -:0

i

| 1 - e [sEaRaNa B+ okl
| 28704 1] 1.2718089] .5429 O] .5576816 0} .1753561 -1 1.777°223
; 2] 1.2718309 .5608 O] .1125467 -10. .5519917

}'28809 1| 1.2718072! .5429 0| .5576804 Of L16312493 -1 1. 774734
. 2! 1.2719375 .5610 0:-.2645923 -31,  .551383€ -:

[

i [ [ vd ' ) 752 R
. 28868 1‘ 1.2718005| .5429 0| .5576787 G, .224973 SR
1 2| 1.2723627! .5614 O' .3464439 -12  .551951% °

, ‘ ‘ : N
| 59 1 1.2717839! .5429 0| .5576649 O .2249782 -:iF et
L 2| 1.2733271: .5625 O! .8906887 -13 .5518787 o

|

| ' 1 i . ~ ~ SeLa-
| 20735 |° 1.2717263i 5429 0, 5576289 O .00% : i
i '2, 1.2760979| .5661 0, -.2000056 -13 .55:1%25: T
li . . T T T
' 30 1| 1.2715965] .5430 o( 5575862 0. .002 DL ie0e
; [2] 1.2808526; .5790 0/-.1073461 -13' .5513203
' T ' T — N
40 ‘1] 1.2646804. .5382 O: .5570759 © .2243731 -1% . 4473°°C
: 12l 1.3830892] .6704 o) .1185635 -:3  .s4s:20% B
L o 1] 1.2364745, .5093 o' 5576799 2 .oco IEFSRLE
I [2] 1.8239095! .9695 o' 2249822 -16 .5304:188 -
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The Laboratory for Numerical analysis is an integral part of the

Institute for Physical Science and Technology of the University of Maryland,

under the general administration of the Director, Institute for Physical

Science and Technology. It has the following goals:

(o}

To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreigrn govern-
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor 1. BabuSka, Chairman,

Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.
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